USN											10	MTP13	
First Semester M.Tech. Degree Examination, June 2012													
											I Fluid Mechanics		
Tin	Time: 3 hrs. Max. Marks:100												
	Note: Answer any FIVE full questions.												
1	a. b.	Explain i) Translation ii) Rate of deformation and iii) Rotation. (10 Marks) The velocity components in a two dimensional flow are $u = y^3/3 + 2x - x^2y$ and $v = xy^2 - 2y - x^3/3$ represent a possible case of an irrotational flow. (10 Marks)											
2	a.	 a. Obtain an expression for Euler's equation of motion in deferential form along the structure. (10 Ma) b. The discharge through 20cm diameter pipe increases linearly from 25 to 100lt/sec is seconds. What pressure gradient must exist to produce this acceleration? Also work out difference in pressure intensity that exists between the section that lie 7.5m apart. (10 Ma) 											
` `	b.												
3	a. What is Hagen-Poiseuille's formula? Derive an expression for Hagen Poiseu											formula. (10 Marks)	
	b.	Oil with Kinematic viscosity 5×10^{-4} m ² /s and density of 800 kg/m ³ is pumped through a pipe 0.1 m in diameter at a rate of 25 lit/sec. What is the pressure drop in 10 m of horizontal pipe? What size pipe would reduce the pressure drop to one third this value for the same flow rate? (10 Marks)											
4	a.	Derive the Universal velocity profile near a wall given by $\frac{u}{u^*} = 2.5 \ln \left(\frac{yu^*}{\gamma}\right) + 5.5$ using Prandtl's mixing length theory. Where u^* = shear velocity											
	b.											(12 Marks) (08 Marks)	
5		Explain Hydrodynamic theory of lubrication.(12 Mathematication)Write a note on : i) Parallel flow past a sphere ii) Oseen's approximation.(08 Mathematication)											
6	a. b.											(10 Marks)	
)	$\frac{u}{U_{\infty}} = \frac{u}{U} = \frac{3}{2} \frac{y}{\delta} - \frac{1}{2} \left(\frac{y}{\delta}\right)^2. \delta = \text{boundary layer thickness, Calculate : i)}$											placement	
7	0	thickne				ome	ntun	n t	thick	(ne	ness iii) shape factor.	(10 Marks)	
,		Explain the terms : i) Total drag on a body ii) Resultant force on a body iii) Co – efficient of drag iv) Co – efficient of lift. (10 Marks) A truck having a projected area of 6.5 square meters traveling at 70 km/hr has a total resistance of 2000N of this 20% is due to rolling friction and 10% is due to surface friction. The rest is due to form drag. Calculate the co-efficient of form drag. Take density of air = 1.25 kg/m ³ . (10 Marks)											
8	a. b.	rite short notes on the following : Pressure transducer. Single wire measurement. Estimate of uncertainty											

- c. Estimate of uncertainty.
- d. Hot wire anemometer.